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I. INTRODUCTION 

This project was conceived as a means of fabricating high- 

strength bulk graphite-metal structures by taking advantage of the transient 

liquid phase which is formed in the carbide-carbon eutectic region to act 

as a bonding agent. This technique employs no binder materials,  and is 

quite straightforward in  operation. 

a r e  simply dry-mixed, poured into a graphite mold, and hot-pressed. 

Carbon and metal powders (or carbides) 

Ten metal  elements were selected a s  "alloying" agents; these 

were: 

6. Boron 

7, Titanium 

8. Beryllium 

9. Uranium 

10. Thorium 
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As will become evident later in the report, some metals a r e  

more amenable to the technique than others. 

to be anomalous, and we hope w e  will be able to resolve these discrepancies 

during the next quarterly period. 

Some of the results appear 

11- RESULTS AND DISCUSSION 

The results that w e  have generated to date a r e  somewhat varied, 

and it i s  quite difficult to generalize at this stage of development. 

presents a general summary of the composites made, and some of their 

physical properties. 

de tai 1 below , 

Table I 

The rationale underlying each system is discussed in 

A, Hafnium-Carbon Composites 

This system has excellent potential for developing a high-strength 

material  of exceptional refractoriness. 

additions of 10 and 20 wtyo, pressed at 2800"C, have low strengths. 

30 wt% addition, however, the flexural strength increases abruptly to 9200 

psi. 

composite. 

the original large carbide grains have all but disappeared, and instead 

there is a fine dispersion of carbide particles that precipitated out on cooling. 

The carbon grains show shzdings of gray; the lighter a reas  indicating higher 

metal solution than the dark grains. 

reached the eutectic region with the formation of sufficient liquid phase to 

become self-bonding. 

i ts  highest potential. 

materials,  an increase in metal level, and higher process temperature 

(3000°C) should result in significantly higher strength. 

incorporating these changes has been made, but has  not yet been evaluated, 

Test  results on this sample will be included in the next report. 

As can be seen in Figure 1 ,  metal 

With a 

Figures 2 and 3 show the microstructure of the 30 wt% (2.8 at. 70) 
There are a considerable number of comparatively large pores, 

It i s  evident that the carbide has  

It is a l so  evident that this system has not yet reached 

The elimination of the pores, the use of finer starting 

A test sample 

Bo Tantalum-Carbon Composites 

The tantalum-carbon system has resisted all efforts to date to 

make a composite of acceptable strength. Samples with 10, 20, and 30 wt% 

tantalum, pressed a t  2800"C, all had flexural strengths below 300 psi, 

Increasing the pressing temperature to 3000°C at the 30 wt% metal level 
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TABLE I 

GENERAL SUMMARY OF COMPOSITION. PROCESS TEMPERATURES. 

AND STRENGTH DATA 

Pres sing Flexur a1 Form of 
S e r i e s  T e m p . ,  Strength,  p s i  Meta l  Densi ty ,  

w/o Meta l  " C  W/G A/G Addition g/cc R e m a r k s  

30Hf 
20Hf 
1 OHf 

30 T a  
30Ta 
20Ta 
lOTa 

50Mo 
30Mo 
20Mo 
1 OMo 

50Cb 
30Cb 
20Cb 
lOCb 

30Zr  
20Zr  
lOZr  

30B 
30B 
20B 
1 OB 

30Ti  
20Ti  
lOTi 

30Be 
20Be 
lOBe 

50 U 
30U 
30U 
20 u 
1ou 
50Th 
30Th 
30Th 
20 T h  
lOTh 

2800 

2800 

3000 
2800 
2800 
2800 

2800 
2800 
2800 
2800 

2800 
2800 
2800 
2800 

2800 
2800 
2800 

2300 
2800 
2800 
2800 

2800 
2800 
2800 

2800 
2800 
2800 

2800 
3000 
2800 
2800 
2800 

2800 
3000 
2800 
2800 
2800 

2800 
9 240 

244 
Low 

Low 
267 

Low 
Low 

9347 
5540 
2500 
Low 

2514 
28 90 

119 
Low 

5380 
2281 
Low 

4680 
4460 
3450 
4070 

3830 
2050 
2915 

2210 
3780 
4000 

4370 
2016 
1050 
Low 
Low 

3993 

1200 
- -  

- -  
- -  

2270 
71 

- -  
- -  
73 

- -  
- -  

3533 
2670 
2000 

1793 
1260 

- -  

- -  
- -  

2260 
934 

2590 
2100 
2940 
41 60 
1570 
1480 
1274 

1400 
1210 
1230 

2970 
69 1 
5 26 

- -  

- -  
- -  

1376 

100 
- -  
- -  
- -  

Carb ide  
Carb ide  
Carb ide  

Carb ide  
Carb ide  
Carb ide  
Carb ide  

Meta l  
Meta l  
Meta l  
Meta l  

Meta l  
Me tal 
Metal  
Me tal 

Carb ide  
Carb ide  
Carb ide  

Carb ide  
Carb ide  
Carb ide  
Carb ide  

Carb ide  
Carb ide  
Carb ide  

Meta l  
Me ta l  
Me tal 

Oxide 
Oxide 
Carb ide  
Carb ide  
Carb ide  

Me tal 
Meta l  
Meta l  
Me tal 
Me tal 

l l T  R E S E A R C H  I N S T I T U T E  

- 3 -  

2. 79 
2. 33 
- -  

2. 68 V e r y  friable, 

- -  imposs ib l e  t o  
and almost 

machine . 
--  
- -  
- -  

2. 49 
2. 32 
- -  
- -  

2. 69 
2. 26 

2. 14  
2. 19 

- -  

- -  
1. 84 
1. 83  
1. 81 
1. 83 

1 .96  
2. 07 
2. 08 

1 .94  
1. 84 
1. 76 

- -  Samples  show 
- -  s e v e r e  inter - 

2. 36 nal cracking.  
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loa O o o c  
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7000 

6300 - 

5000 - 

4000 - 

3000 - 

2000- 

P 

wt% Hafnium 

1. FLEXURAL STRENGTH VS. M E T A L  LEVEL 
FOR HAFNIUM-CARBON COMPOSITES. 2800" C 
PRESSING TEMPERATURE. 
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FIG. 2. MICROSTRUCTURE O F  30 VkiT% HAFKIUM-CARBOX 
COMPOSITE, PRESSED A T  2800" C. (BLACK AREAS 
A R E  VOIDS. ) 
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FIG. 3 - ELECTRON IMAGE ( L E F T )  O F  SMALL FREE-CARBIDE 
GRAINS, -4ND X-RAY IMAGE (RIGHT) SHOWING HAFNIUM- 
RICH DIFFUSION AREA4S. 
X680) 

(Elec t ron  M i c r o p r o b e  Analyzer ,  
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showed no improvement in strength. 

of the 30 wt% tantalum sample pressed at 2800°C. 
essentially unaltered, except possibly for some rounding and flattening of 

the grains. Very little metal solution, i f  any, has occured, and is no doubt 

the reason for the low strengths. 

Figure 4 shows the microstructure 

The carbide grains a r e  

It i s  reasonable to assume, therefore, that the metal-strengthening 

m AAlech~nism does r;ot readily oceiir in the solid state, and that the liquid 

carbide-carbon eutectic region must be reached to derive the benefit of 

adding metals. 

approximately 3450°C, it. i s  not s i l r p r i s h g  t h t  this series had low stre;?@ 

levels. It would also seem that the processing temperatures necessary to 

make high-strength composites with tantalum metal alone a r e  impractical. 

With the tantalum carbide -carbon eutectic reported to be 

C. Molybdenum-Carbon Composites 

The molybdenum-carbon system has been found to be a very 

interesting one. Pressed  a t  28OO0C, composites at  10, 20, 30, and 50 wt% 

metal levels rose from too-low-to -test to increasing flexural strengths of 

119 psi  at 200J0, 5540 psi a t  307't, and 9350 psi at the 50oJo metal level (Figure 

5). In Figure 6 (the 3070 metal addition) i t  can be clearly seen that there 
are a reas  rich in dissolved molybdenum from which excess metal carbide 

has precipitated on cooling. 

be due to an inherent intoleration of molybdenum in the graphite lattice 

above some given level. 

bility in  this system by processing at higher temperatures f o r  increased 

solubility, and then analyzing, at  least semi-quantitatively, by microprobe 

X-ray analysis. 

to the lighter colored molybdenum-rich areas. 

pletely devoid, o r  nearly so, of metal, a s  evidenced by a line sweep on the 

electron microprobe. 

comparatively low strength and reduce the strength of the composite a s  a 

whole. Obviously, what is desired is a completely dense structure of uni- 

form metal  solution, with perhaps a slight excess of metal  which will p re-  

cipitate a s  a fine dispersion of free carbide. 

The precipitation of the carbide might well 

We intend to t ry  to determine the limits of solu- 

Note also in Figure 5 that there a r e  dark a reas  adjacent 

These dark a reas  a r e  com- 

It can be surmised that the metal-free a reas  a r e  of 

Figure 7 shows a very small a r ea  of carbide precipitation and 

attendant metal solution. The system shows considerable promise, and 

I l T  R E S E A R C H  I N S T I T U T E  
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FIG. 4. MICROSTRUCTURE O F  30 M'T70 TANTALUM-CARBON 
COMPOSITE, PRESSED AT 2800" C. 
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0 10 20 30 40 50 

wt% Molybdenum 

FIG. 5. FLEXURAL STRENGTH VS. M E T A L  L E V E L  

2800" C PRESSING TEMPERATURE. 
FOR MOLYBDENUM- CARBON COMPOSITES. 
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FIG. 6 - MICROSTRUCTURE O F  30 WTYo MOLYBDENUM- 
CARBON COMPOSITE, PRESSED A T  2800°C.  
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FIG. 7. ELECTRON IMAGE (LEFT)  O F  SMALL FREE-CARBIDE 
GRAINS, AND X-RAY IbfAGE (RIGHT) SHOWIKG 
MOLYBDENUM-RICH DIFFUSIOh- AREAS. ( E l e c t r o n  
Microprobe A n a l y z e r ,  X680) 
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we will attempt to make a molybdenum composite of optimum properties 

during the current contract period. 

D. Columbium - Carbon Compo sites 

The columbium system appears to offer little potential without 

the use of higher temperatures. Pressed  at 2800"C, samples with 10 and 

20 wt% additions were extremely difficult to machine, and essentially had 

zero  strength. However, at the 30% metal level, flexural strength values 

rose  to  3800 psi. 

ihdt most  oi the metal addition (added as metal) had converted io carbide, 

but that there was only limited solution of the carbide into the graphite 

lattice (Figure 9). 

Examination of the microstructure (Figure 8) showed 

A t  the temperatures we are  dealing with here,  it is considered 

that the reactions involved in this type of system occur practically instan- 

taneously. It follows, therefore, that at 2800"C, only limited amounts of 

solution occur. 

peratures  of at least  3000°C must  be used to make composites with 

strength levels equivalent to the hafnium and molybdenum systems. 

To make this system workable requires that process  tem- 

E. Zirconium -Carbon Composites 

The zirconium-carbon system also shows considerable promise. 

Samples with 10% metal additions (as carbide) and pressed at 2800°C show- 

ed ze ro  strength. A t  20 and 30 wt%, strengths went to 2300 ps i  and 5400 

psi, respectively. In looking at the microstructure of the 30% zirconium 

sample (Figure lo),  it is apparent that a high degree of densification has 

occurred, and that for this degree of densification a considerable amount 

of liquid phase must have been present (Figure 11). 

Our concern now is that the zirconium may not be distributed 

(in solution) evenly, thereby showing a lower strength value than may 

ultimately be attained. 

sample with excess metal  (50%) at 3000°C. 

demonstrating the intrinsic value of zirconium as an alloying agent. 

Our current intention is to remake a zirconium 

This should be capable of 

I I T  R E S E A R C H  I N S T I T U T E  
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FIG. 8 - MICROSTRUCTURE O F  33 WTYo COLUhfBIUM-CARBON 
COMPOSITED, PRESSED AT 2800°C. 
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FIG. 4. ELECTRON IiMAGE (LEFT)  O F  LARGE FREE-CARBIDE 
AND X - R A Y  IMAGE [RIGHT) SHOWING SMALL GRAIXS, 

AMOUNT O F  COLUMBIUM DIFFUSION AREAS. 
Mic roprobe  A n a l y z e r ,  X680) 

( E l e c t r o n  
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FIG. 10 - MICROSTRUCTURE O F  30 IVT?’o ZIRCONIUM-CARBIDE 
COMPOSITE, PRESSED AT 28OOOC. 
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FIG. i 1. ELECTRON I?vIAGE; (LEFT) OF FREE-CARBIEE 
GRAiKS. AND X-RAY IhlAGGE (RIGHT) SHOWING 
ZLRCONIU?v"IRICH DIFFCSION AREAS. (Elec t ron  
l i i c rop robe  Ana lyze r ,  X 6 8 0 .  ) 
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F. Boron-Carbon Composites 

The boron system has been of particular interest ,  largely be- 

cause of anomalous results. 

amounts of liquid at all metal levels. 

flexural strength of 4100 psi  is slightly lower than the across-grain strength 

of 4200 psi. 

off to about 3200 psi. The dropoff is unreasonable when compared to  the 

30% level sample which rises to 4500 ps i  in flexure with the grain, but is 

Gr&y 2100 p s i  acr035 the gra'k. The qualitative observation that approxi- 

mately 5% of the compact was lost  through extrusion of liquid around the 

punches, and in one case ate  1/8 in. worm-holes through 2 1/2 in. of mold 

stock, is evidence of an abundant liquid phase. 

Pressed  at 2800" C ,  samples developed large 

At the 10% level, the with-grain 

As the metal percentage is increased to 20%, strengths drop 

These resul ts  led us to  conclude that our processing temperature 

had been too high. 

proved to have the highest strength of the ser ies  (4700 psi). 

microstructure of this sample (Figure 12), there is very little evidence of 

any f ree  boron carbide. 

even this small  amount. 

A subsequent sample, 30% boron, pressed at 2300°C 

Looking at the 

W e  actually had to hunt for an a r e a  that showed 

From this photomicrograph it would seem that the graphite matr ix  

can accommodate 30% boron, one way o r  another, with little f r ee  carbide 

present. 

It would be interesting to pursue this system to the point where 

boron was the major elemental phase, and the matrix was homogeneous 

but still retained the graphite ring structure. 

C. Titanium-Carbon Composites 

The titanium-carbon system seems to have little potential for 

developing into a strong, refractory bulk material .  The highest strength 

attained in the ser ies  (10, 20, and 30%, pressed at 2800°C) was only 3800 

psi  in flexure. From the microstructure (Figure 13), one can see that a 

high degree of densification was achieved, but the mottled dark and light 

a r eas  indicate that the titanium in solution is not distributed evenly. 

fa21t that another test  piece with 50% titanium, and pressed a t  3000"C, 

It i s  

i l T  R E S E A R C H  I N S T I T U T E  
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FIG. 12. MICROSTRUCTURE O F  30 W T %  BORON-CARBON 
COMPOSITE PRESSED A T  2300°C. 
P r e v i o u s  Composi tes ,  P r e s s e d  at 2800" C. ) 

( A s  Opposed To A l l  
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FIG. 13. MICROSTRUCTURE OF 30 WTOJo TITANIUM-CARBON 
COMPOSITE, PRESSED A T  2800" C. 
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should be made. 

saturate the structure and indicate its t rue potentia1 [Figure 14). 

H. Beryllium-Carbon Composites 

This metal level and temperature should be sufficient to 

This important system has been disappointing, so far. The 

strength vs. metal content (Figure 15) appears to be anomalous in that the 

lower metal  levels have the highest strength. We do not yet have a metal- 

lographic specimen for visual inspection, and thus can draw no conclusions 

on microstructural  evidence. 

Based on the low atomic weight of beryllium, these composites 

have a comparatively high atomic percentage present (34 at. % Ee  vs. 2. 8 

at. % Hf, at the 30 wt% level). This high atomic percentage, coupled with 

mandatory low process temperatures (about 2300" C) to prevent loss  by 

vaporization, may indicate that 4000-5000 ps i  flexural strength is the upper 

l imit  that can be expected. 

as some of the better graphites, and would not appear to offer significant 

advantages. 

This strength level is approximately the same 

The fact that these samples were all pressed at 2800"C,  may 

mean that we suffered gross amounts of beryllium loss  through vaporiza- 

tion. One additional sample will be made at the 30% level and pressed at 
the Be2C dissociation temperature (2100" C). 

I. Uranium -Carbon Composites 

Uranium dicarbide (UC,) melts at about 2400" C. Since this 

se r ies  was pressed a t  2800"C, the melted carbide and the liquid eutectic 

should have offered sufficient liquid phase for realizing high strength. 

the 10 and 20 wt% levles, the samples were too weak to machine, and 

therefore a r e  considered to have zero strength. 

was only 1050 ps i  in flexure. 

3000°C (30 wty'), doubled the strength. 

and pressing at 2800"C, again doubled the strength to a level of 4400 ps i  

in flexure. From these results,  it would seem that we have not yet fully 

satisfied the lattice demand of dissolved metal to achieve maximum 

strength. 

A t  

A t  30 wt%, the strength 

Increasing the pressing temperature to 

Increasing the metal level to 50% 

The high molecular weight (238) of uranium, and therefore low 

I I T  R E S E A R C H  I N S T I T U T E  
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FIG. 14. ELECTRON ILWCE (LEFT) O F  SLMALL FREE-CARBIDE 
GRAINS, AND X-RAY IMAGE (RIGHT) SHOWING TITANIUM 
M E T A L  DIFFUSION. ( E l e c t r o n  M i c r o p r o b e  Ana lyze r ,  X680) 
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FIG. 15. FLEXURAL STRENGTH VS. METAL LEVEL 

2800" C PRESSING TEMPERATURE. 
FOR BERYLLIUM-CARBON COMPOSITES. 
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atomic percentage present (2. 1 at. % at 30 wt% level), indicates that still 

higher metal  levels should be processed at a minimum of 3000°C.  

A t  first glance, this might seem to be an impractical system, but 

the high refractoriness of oxidation product ( U 0 2 )  make it worthwhile to 

pursue this system further. 

reach a minimum of 10,000 psi, and might also have a protective mechan- 

ism for oxidation resistance at high temperature. 

It is felt that a composite can be made to 

J. Thorium-Carbon Composites 

The thorium compacts have many properties in common with the 

uranium samples. A t  the 10 and 20 wt% levels (28OO0C),  the compacts 

were again too weak to machine into test  specimens. A t  30 and 50% metal 

levels, samples could be cut, if the areas  of gross internal cracking and 

fissuring were avoided. 

t ic of this system, and was experienced at all thorium levels. 

only system that showed this phenomenon, and an  explanation cannot be 

offered at this time. 

when so much more  promise is exhibited by the other metals. 

The internal cracking seems to be a characteris-  

This was the 

It does not seem worthwhile to pursue this system 

111. GENERAL SUMMARY 

From the results to date, one can speculate, to a degree, on the 

role of metals in graphite strengthening. Based on these findings, it is  

not unreasonable to conclude that the individual metals have an intrinsic 

ability to strengthen the graphite lattice, and that this ability varies from 

metal to metal  even at similar weight or atomic percentages. 

We feel that we have just scratched the surface in this important 

materials field, and much remains to be done. 

high strengths at first t ry  obviously deserve additional work to realize their 

full potential. 

Those systems showing 

We, of course, a r e  pleased that the concept of bonding bulk 

graphite structures by taking advantage of the transient liquid eutectic r e -  

gion has been demonstrated. Within the limits of time and budget, we in- 

tend to explore the compositional and temperature regions that appear to be 

m o s t fruitful. 

I I T  R E S E A R C H  I N S T I T U T E  
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One further observation is probably in order.  A l l  of the above 

composites were pressed from room temperature to 2800"C, or above, 

within the short  period of 1 1/4 hr o r  less .  

to evaluate the time factor; longer pressing t imes (slower temperature 

Some attempt should be made 

r i se )  might be one way to achieve more uniform metal  

thereby increase strength levels. 

IV. LOGBOOKS AND CONTRIBUTING PERSONNEL 

distribution, and 

A l l  data pertaining to this project a r e  recorded in IITRI Logbook 

Nos. C-14960, C-14969, and C-15136. Contributing personnel include 

Oswald Sanders and George Besbekis. 

Respectfully submitted, 

/ C. W. Boquist, 
Research Scientist 

APPROVED: 

S .  L. Blum, 
Assistant Director 
Metals and Ceramics Research 
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